Scheme for B.Tech. Mechanical Engineering with Honors in Robotics and **Automation** # **Department of Mechanical Engineering** | | Robotics & Automation# | | | | | | |---|---|------|---|---|---|-----| | 1 | Kinematics and Dynamics of Robotic Manipulators | V | 2 | 1 | 0 | 3 | | 2 | Control of Robots and Automation Systems | V | 3 | 0 | 0 | 3 | | 3 | Robot Vision and Sensing | VI | 3 | 0 | 0 | 3 * | | 4 | Programming, Control and Automation Lab | VI | 0 | 0 | 6 | 3 | | 5 | Artificial Intelligence for Robotic systems | VII | 2 | 1 | 0 | 3 | | 6 | Mini Project on Robotics and Automation | VIII | 0 | 0 | 6 | 3 | | | | | | - | | | 431 DEAN, AA ## Malaviya National Institute of Technology Jaipur #### DETAILS OF THE COURSE: Honours Robotics and Automation | Course Code | Course Title | Credits | Lecture | Tutorial | Practical | Studio | |-------------|---|---------|---------|----------|-----------|--------| | | Kinematics and Dynamics of Robotic Manipulators | 3 | 2 | 1 | 0 | 0 | PREREQUISITE: None #### COURSE OUTCOMES | 000110 | L COT COMEC | |--------|--| | CO1 | Understand the basics of manipulator and its applications | | CO2 | Model forward and inverse kinematics of robot manipulators. | | CO3 | Analyze forces in links and joints and dynamic modeling of a robot | | CO4 | Program a robot to perform tasks in industrial applications | #### **COURSE CONTENTS** <u>Manipulators and Their Application:</u> Types of Manipulators, Application of robot in welding, machine tools, material handling, and assembly operations parts sorting and parts inspection. <u>Transformations</u>: Robot architecture, Pose of rigid body, Coordinates Transformation, DH parameters, DH parameters of Euler angles. <u>Kinematics</u>: Forward and inverse position analyses, Velocity analysis- Jacobian matrix, Link velocities, Jacobian computation, DeNoC, Forward and Inverse velocity analysis, Acceleration analysis. <u>Statics and Manipulator Design:</u> Force and moment balance, Recursive calculations, Equivalent joint torques, Role of Jacobian, Manipulator design. <u>Dynamics:</u> Inertia properties, Euler-Lagrange formulation, Newton-Euler formulation,, Recursive Newton-Euler algorithms, Dynamic algorithms Motion Planning: Joint space planning, Cartesian space planning, path primitives, Cartesian trajectories. #### TEXT BOOKS/ REFERENCE BOOKS mr, - 1. Introduction to Robotics, S.K. Saha, McGraw Hill Education (India) PvtLted, New Delhi, 2014 - 2. Dynamics and Balancing of Multibody Systems, Himanshu Chaudhary, S.K. Saha, Springer, 2009 - 3. Introduction to Robotics: Mechanics and Control, John Craig, Pearson/PrenticeHallEducation, 3rdEdition, 2005 - Introduction to Autonomous Mobile Robots, R.Siegwart, et.al, Prentice Hall of India, 3rd Edition, 2005. - 5. Robotics and control. Mittal, R.K., and I.J. Nagrath, TataMcGraw-Hill, 2003. ## Malaviya National Institute of Technology Jaipur #### **DETAILS OF THE COURSE** | Course Code | Course Title | Credits | L | T | P | Studio | |-------------|--|---------|---|---|---|--------| | | Control of Robots and Automation Systems | 3 | 3 | 0 | 0 | 0 | #### PREREQUISITE: None #### COURSE OUTCOMES: | CO1 | Understand the basics of control systems. | |-----|--| | CO2 | Understand the fundamental concepts and principles of robot control systems and industrial automation. | | CO3 | Model and Analyse the robotic systems. | | CO4 | Integrate sensors for perception and feedback control in robotics and automation applications. | | CO5 | Analyse and design motion planning algorithms for robots operating in different environments. | | CO6 | Apply optimization techniques for trajectory planning and system performance enhancement. | #### COURSE CONTENTS: Introduction to Advanced Control in Robotics and Automation: Overview of advanced control concepts, Challenges and opportunities in robot control and automation systems, Review of control systems engineering principles Kinematics and Dynamics of Robotic Systems: Forward and inverse kinematics, Jacobian matrix and manipulability analysis, Lagrange's equations and dynamic modeling, Control-oriented representation of robot dynamics. Advanced Control Techniques for Robotic Manipulators: PID control and tuning methods, Adaptive control for uncertain systems, Robust control and H-infinity control, Nonlinear control techniques (e.g., feedback linearization, sliding mode control) Mobile Robot Control: Motion planning and trajectory generation for mobile robots Localization and mapping techniques, Navigation and path-following control, Sensor fusion for mobile robot perception. <u>Sensing in Robotics and Automation</u>: Sensor integration for robotic systems, Vision-based perception and object recognition, Force and tactile sensing for robot-environment interaction, Sensor fusion and data fusion techniques. Optimization Methods in Robotics and Automation: Trajectory optimization and motion planning, Optimal control and model predictive control (MPC), Multi-objective optimization for robot performance enhancement, Parameter optimization and system identification. Emerging Trends in Robotics and Automation: Collaborative robotics and human-robot interaction, Swarm robotics and collective behavior, Adaptive control and learning-based control methods, Industrial automation systems and smart factories Case Studies Integration of state-of-the-art control methods into practical robotics and automation scenarios, Identifying the needs of a given robotics application, and designing an appropriate control system, Assessing and bettering control performance #### **TEXT BOOKS/ REFERENCE BOOKS** - 1. Modern Control Systems, R. C. Dorf and R. H. Bishop, Pearson Publication, 2016. - 2. Automatic Control Systems, F. Golnaraghi and B. C. Kuo, John Wiley & Sons INC, 2014. - 3. Microprocessors and Microcontrollers, Architecture, Programming and Interfacing S. K. Mandal, Tata McGraw Hill Education Private Limited, 2017. - 4. Feedback Control of Dynamic Systems, G.F. Frenklin, J. D. Powell, A. Emami-Naeini, Pearson Publicatio, 2018. - 5. Introduction to Autonomous Robots: Kinematics, Perception, Localization, and Planning, Nikolaus Correll, Sven Koenig, and Vijay Kumar, - 6. Mobile Robots: Navigation, Control and Remote Sensing, Gerald Cook, Wiley, 2011. my Elisa ## Malaviya National Institute of Technology Jaipur Details of the Course : B. Tech Honors (Robotics and Automation) | Course | Course Title | Credits | L | T | P | Studio | |--------|--------------------------|---------|---|---|---|--------| | | Robot Vision and Sensing | 3 | 3 | 0 | 0 | 0 | Prerequisite: None #### **Course Outcomes:** | CO1 | Understand and apply fundamentals of computer vision | | |-----|---|--| | CO2 | Understand the principle of sensors and their characteristics | | | CO3 | Understand and apply vision-based motion estimation. | | | CO4 | Understand and apply machine learning to robot vision | | #### **Course Contents:** #### Robotic vision sensors and their interfacing <u>Fundamentals of Computer Vision:</u> Image accusation and representation, image transformation, filtering, restoration, morphing, Camera Models, Calibration, Single view geometry, Multiple view geometry, Epipolar geometry, RANSAC <u>Position and Orientation:</u> Feature based alignment; Pose estimation; Time varying pose and trajectories, Structure from motion, dense Motion Estimation, Visual Odometry (Semi-direct VO, direct sparse odometry), Bundle Assignment Localization and Mapping: Initialization, Tracking, Mapping, geometric SLAM formulations (indirect vs. direct error formulation, geometry parameterization, sparse vs. dense model, optimization approach), Relocalization and map Optimization, Visual SLAM, Examples: Indirect (Feature based) methods (MonoSLAM, PTAM, ORB-SLAM), Direct methods (DTAM, LSD-SLAM), Sensor combinations (IMU, mono vs. Stereo, RGB-Depth), Analysis and parameter studies. Recognition and Interpretations: Concepts of machine learning and deep learning, sequence modeling, Learning for robotic vision: Active learning, incremental and class incremental learning identify unknowns, uncertainty estimation, Embodiment for robotic vision: active vision, spatial and temporal embodiment, reasoning for object, scene and scene semantics. #### Text Books/ Reference Books - 1. Sensors for Mobile Robots: Theory and Application, H. R. Everett, A K Peters/CRC Press, 1995. - 2. Robotic Tactile Sensing, Dahiya, Ravinder S., Valle, Maurizio, Springer, 2013. mili 10 mos - 3. Robotics Technology and Flexible Automation, S. R. Deb, Sankha Deb, 2nd edition, McGraw Hill Education, 2017. - 4. Image Processing, Analysis and Machine Vision, Milan Sonka, Vaclav Hlavac and Roger Boyle, Cengage, 2013 # Malaviya National Institute of Technology Jaipur DETAILS OF THE COURSE B. Tech Honors (Robotics and Automation) | Course Code | Course Title | Credits | L | T | Р | Studio | |-------------|--|---------|---|---|---|--------| | | Programming, Control, and Automation Lab | 3 | 0 | 0 | 6 | 0 | #### PREREQUISITE: None #### COURSE OUTCOMES: | CO1 | Understand and Apply the PLC, SCADA programming | | |-----|--|--| | CO2 | Interface hardware and software of automated systems | | | CO3 | Understand and Apply various robot programming languages | | | CO4 | Design the controller for robotic systems | | #### COURSE CONTENTS: | S. No. | Name of Lab Experiment | |--------|---| | | Control | | 1. | Introduction to MATLAB and Simulink. | | 2. | Introduction to LabVIEW software | | 3. | Analysis of a typical spring-mass-damper mathematical model of a mechanical system using LabVIEW. | | 4. | Steering control of a mobile robot using LabVIEW. | | 5. | Designing and tuning a PID controller in MATLAB. | | 6. | Simulation of Legged walking robots in MATLAB environment. | | 7. | Interfacing and controlling of stepper motor with a microcontroller. | | 8. | Design and construct a microcontroller-based DC motor speed control system. | | | Automation | | 9. | Speed Control circuits for double acting cylinder (Automation) | | 10. | A synchronization circuit for two cylinders | | 11. | Continuous reciprocation of the double acting cylinder | | 12. | Sequencing of two-cylinder circuits | | 13. | Cascading circuit for trapped signals-2 groups | | 14. | Logic Circuits AND / OR | | 15. | Basic Electro Pneumatic Circuits: Continuous reciprocation of cylinder (with timer and counter) Sequencing of two cylinders | | 16. | Force, Velocity calculations in Hydraulic Linear actuation | | 17. | Speed Control of AC Servo Motor using open and closed loop control | | 18. | Run A Stepper Motor: For Required Angle | | 19. | Experimentation on PLC Application Trainer | | 20. | PLC Control Pneumatic/ Hydraulic linear actuator circuits, Water Level Controller using PLC, PLC Controlled Material Handling System, Process Control using Virtual Instrumentation, Pick and place operation of Robot in Manual Mode, PLC Controlled Material Handling System, Process Control using Virtual Instrumentation | | 21. | Characteristics of Inductive, capacitive and photoelectric proximity sensors | | 22. | Operating a simple load using relays, switches and pushbuttons using PLC | | | Programming | | 23. | Programming the PLC Via Ladder logic, Temperature sensing using SCADA, Robot teaching using VAL II Programming, Plan mobile robot paths using RRT in MATLAB, Control of a mobile robot using gesture in Python | #### TEXT BOOKS/ REFERENCE BOOKS 1. Programmable Logic Controller, W. Bolton, Newnes Publisher, 2015. July win - 2. Practical SCADA for industry, D. Bailey and E. Wright, Newnes Publisher, 2003. - 3. Automation Studio Catalogue - 4. Microprocessors and Microcontrollers, Architecture, Programming and Interfacing S. K. Mandal, Tata McGraw Hill Education Private Limited, 2017. ## Malaviya National Institute of Technology Jaipur | Course
Code | Course Title | Credits | Lecture | Tutorial | Practical | Studio | |----------------|---|---------|---------|----------|-----------|--------| | | Artificial Intelligence for Robotic Systems | 3 | 2 | 1 | 0 | 0 | #### PREREQUISITE: None #### Course Outcomes: | CO1 | Learn about the different parts of a robotic system, including sensors, actuators, and controllers | |-----|--| | CO2 | Gain knowledge on the basics of Artificial Intelligence and Machine Learning | | CO3 | Develop the ability to critically evaluate the effectiveness of different AI techniques in robotics and identify areas for improvement | | CO4 | Understand the practical assumptions required to develop an autonomous robotic system | #### **Course Contents:** Introduction to Robotics and Artificial Intelligence: Overview of Robotics and its components, introduction to Artificial Intelligence and Machine Learning, Types of Al and ML algorithms <u>Perception in Robotics:</u> Introduction to perception in Robotics, techniques for image processing (segmentation, and feature extraction), object recognition and tracking using Al and ML techniques, planning and control in Robotics. <u>Introduction to Planning and Control in Robotics:</u> Reinforcement learning techniques for motion planning and control, state estimation, feedback control, and trajectory planning. <u>Human-Robot Interaction:</u> Overview of human-robot interaction, social robotics and the role of AI in human-robot interaction, ethics of human-robot interaction and future directions <u>Emerging Trends in Robotics</u>: Overview of emerging trends in robotics, swarm robotics and multi-robot systems, autonomous vehicles and the role of AI in transportation. #### Text Books/ Reference Books - 1. Artificial Intelligence: A Modern Approach, Russell and Norvig, Pearson, 2022. - 2. Learning Robotics Using Python, Lentin Joseph, Pearson, 2018, #### Online/E Resources 1. Learning Python for Robotics: tinyurl.com/2xpr55ya ## Malaviya National Institute of Technology Jaipur # DETAILS OF THE COURSE: Honours Robotics and Automation | Course Code | Course Title | Credits | Lectu
re | Tutorial | Practic al | Studio | |-------------|---|---------|-------------|----------|------------|--------| | | Mini Project on Robotics and Automation | 3 | 0 | 0 | 6 | 0 | #### PREREQUISITE: None #### **COURSE OUTCOMES** | CO1 | To develop understanding related to Automation and Robotics system | |-----|---| | CO2 | To be able to select and plan for implementation of Robotics in say manufacturing system. | | CO3 | To be able to do calculations related to Robotics. | | CO4 | To be able to develop PoC and present use of Robotics in real word application. | #### COURSE CONTENTS - Project on Robotics and Automation in any real-life automation system like the cases shown below: - - Robotic exoskeleton: Create rehabilitation tools, such as robotic exoskeletons or wearable sensors that track and analyze movement patterns, to help patients recover from injury or surgery. - Create assistive technology tools, including wheelchair attachments or communication aids, to enable individuals with disabilities carry out daily tasks. - Advanced prosthetic limbs can be designed and built that are robotics-controlled, enabling the user to move more naturally and intuitively. - Robots for Agriculture: Develop machines that can help with agricultural operations including planting, harvesting, and crop monitoring in order to save time and increase productivity. - Drones for Search & Rescue: Create drones with cameras and sensors so they can look for and locate individuals in dire circumstances like accidents or natural catastrophes. - Biomechanical modelling and simulation: Use mechanical engineering principles to model and simulate human body mechanics, such as joint movements or cardiovascular dynamics, to inform medical device and therapy design. - Exploration on soft robotics involves the creation of robots that are designed and built with soft materials, allowing them to interact with their surroundings more flexibly and naturally compared to conventional rigid robots. - Investigate the design and construction of a surgical robot that can aid in surgical procedures, enhancing accuracy and safety for patients. - Research on autonomous assistive robots for elderly care aims to develop robots that can provide assistance to elderly patients with daily tasks, such as dressing or grooming, thereby reducing their dependence on human assistance. - Automation of assembly lines: Create COBOT technologies that can aid human employees on assembly lines in repetitive or hazardous jobs. - Material handling: Create COBOT systems that can transport goods between warehouses and workplaces, obviating the requirement for manual labour. #### Recommended Readings - https://www.djkasiagroup.com/business/ai.html?gclid=EAlalQobChMImp7E0uSy_glVAT8rCh1d1QgMEAAYAiAAEgJcovDBwE - 2. https://www.simplilearn.com/growing-role-of-ai-in-manufacturing-industry-article - 3. https://www.uma.es/medical-robotics/cms/base/ver/base/basecontent/75284/proyectos/?set_language=en - 4. https://www.asme.org/topics-resources/content/top-6-robotic-applications-in-medicine #### SOURCE: PROJECT IDEAS INSPIRED BY INTEL, ASME, ETC.... - 1. https://www.asme.org/topics-resources/content/top-6-robotic-applications-in-medicine - 2. https://www.intel.in/content/www/in/en/healthcare-it/robotics-in-healthcare.html - 3. https://robotnik.eu/applications-of-robotics-in-medicine/ - 4. https://medrobotics.ri.cmu.edu/content/current-projects - 5. https://www.analyticsinsight.net/top-100-robotics-projects-for-engineering-students/ - 6. https://www.geeksforgeeks.org/top-7-projects-in-robotics-for-beginners-and-intermediates/ (for Drone) - 7. https://circuitdigest.com/robotics-projects #### **DETAILS OF THE COURSE** | Course Code | Course Title | Credits | L | T | P | Studio | |-------------|--------------|---------|---|---|---|--------| |-------------|--------------|---------|---|---|---|--------|